Building Machine Learning Challenges for Anomaly Detection in Science
January 1, 2025·,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,·
0 min read
Elizabeth G Campolongo
Yuan-Tang Chou
Ekaterina Govorkova
Wahid Bhimji
Wei-Lun Chao
Chris Harris
Shih-Chieh Hsu
Hilmar Lapp
Mark S Neubauer
Josephine Namayanja
Aneesh Subramanian
Philip Harris
Advaith Anand
David E Carlyn
Subhankar Ghosh
Christopher Lawrence
Eric Moreno
Ryan Raikman
Jiaman Wu
Ziheng Zhang
Bayu Adhi
Mohammad Ahmadi Gharehtoragh
Saúl Alonso Monsalve
Marta Babicz
Furqan Baig
Namrata Banerji
William Bardon
Tyler Barna
Tanya Berger-Wolf
Adji Bousso Dieng
Micah Brachman
Quentin Buat
David C Y Hui
Phuong Cao
Franco Cerino
Yi-Chun Chang
Shivaji Chaulagain
An-Kai Chen
Deming Chen
Eric Chen
Chia-Jui Chou
Zih-Chen Ciou
Miles Cochran-Branson
Artur Cordeiro Oudot Choi
Michael Coughlin
Matteo Cremonesi
Maria Dadarlat
Peter Darch
Malina Desai
Daniel Diaz
Steven Dillmann
Javier Duarte
Isla Duporge
Urbas Ekka
Saba Entezari Heravi
Hao Fang
Rian Flynn
Geoffrey Fox
Emily Freed
Hang Gao
Jing Gao
Julia Gonski
Matthew Graham
Abolfazl Hashemi
Scott Hauck
James Hazelden
Joshua Henry Peterson
Duc Hoang
Wei Hu
Mirco Huennefeld
David Hyde
Vandana Janeja
Nattapon Jaroenchai
Haoyi Jia
Yunfan Kang
Maksim Kholiavchenko
Elham E Khoda
Sangin Kim
Aditya Kumar
Bo-Cheng Lai
Trung Le
Chi-Wei Lee
JangHyeon Lee
Shaocheng Lee
Suzan van der Lee
Charles Lewis
Haitong Li
Haoyang Li
Henry Liao
Mia Liu
Xiaolin Liu
Xiulong Liu
Vladimir Loncar
Fangzheng Lyu
Ilya Makarov
Abhishikth Mallampalli Chen-Yu Mao
Alexander Michels
Alexander Migala
Farouk Mokhtar
Mathieu Morlighem
Min Namgung
Andrzej Novak
Andrew Novick
Amy Orsborn
Anand Padmanabhan
Jia-Cheng Pan
Sneh Pandya
Zhiyuan Pei
Ana Peixoto
George Percivall
Alex Po Leung
Sanjay Purushotham
Zhiqiang Que
Melissa Quinnan
Arghya Ranjan
Dylan Rankin
Christina Reissel
Benedikt Riedel
Dan Rubenstein
Argyro Sasli
Eli Shlizerman
Arushi Singh
Kim Singh
Eric R Sokol
Arturo Sorensen
Yu Su
Mitra Taheri
Vaibhav Thakkar
Ann Mariam Thomas
Eric Toberer
Chenghan Tsai
Rebecca Vandewalle
Arjun Verma
Ricco C Venterea
He Wang
Jianwu Wang
Sam Wang
Shaowen Wang
Gordon Watts
Jason Weitz
Andrew Wildridge
Rebecca Williams
Scott Wolf
Yue Xu
Jianqi Yan
Jai Yu
Yulei Zhang
Haoran Zhao
Ying Zhao
Yibo Zhong
Abstract
Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.
Type
Publication
arXiv
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors